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andatory numeracy tests have become commonplace in many countries,

heralding a new era in school assessment. New forms of accountability

and an increased emphasis on national and international standards (and
benchmarks) have the potential to reshape mathematics curricula. It is noteworthy
that the mathematics items used in these tests are rich in graphics. Many of the
items, for example, require students to have an understanding of information
graphics (for example, maps, charts and graphs) in order to solve the tasks. This
investigation classifies mathematics items in Australia’s inaugural national numeracy
tests and considers the effect such standardised testing will have on practice. it is
argued that the design of mathematics items is more likely to be a reliable
indication of student performance if graphical, linguistic and contextual components
are considered both in isolation and in integrated ways as essential elements of task
design.

New forms of accountability: The national testing agenda

In most educational settings, and particularly in schools, standardised measures of
student performance are increasingly influencing (and possibly driving) practice
and the day-to-day decisions that teachers make. A worldwide move towards
centralised testing, which took place in the early 1990s—for example, in England
(Office of Her Majesty’s Chief Inspector of Schools—Ofsted) and the USA
(especially the 2001 No Child Left Behind Ac)—has dramatically increased the
volume of data that teachers are either required to interpret or compile in relation
to their practice (Avenell, 2006). The initial momentum was associated with public
accountability that, not surprisingly, was aligned to an era of economic rationalism.
Schools and other institutions promoting this model of accountability use high-
stakes testing, with obvious consequences for schools, teachers and students who
fail to meet the systemic benchmarks. In Australia, the new Rudd Labor federal
government—as part of its commitment to implement a national curriculum—~has
indicated that published reporting of national testing results will occur. Even
education systems that were not subjected to such benchmarking scrutiny are
moving toward much more comprehensive standardised testing.
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Today, benchmarking is common practice in most school systems. As Smith
indicates:

most schools are now being bombarded with information and data related to

their students’ performance ... [and] such data [can] provide a significant

resource to encourage school improvement—provided it’s accurately interpreted

and effectively devolved to the relevant teachers in the classroom. (2005, p. 12)

The sophistication and detail of the information (and data) presented to classroom
teachers differs markedly from country to country, but international testing instru-
ments (for example, Trends in International Mathematics and Science Study—
TIMSS—and the Program for International Student Assessment—PISA) are
creating some form of reporting consistency.

Although there are strong proponents of formalised testing (for example,
Coyne & Harn, 2006), much of the data generated is limited to ‘snapshots’ of
student performance as large cohorts (often in relation to national averages).
Consequently, the information teachers receive is relatively unsophisticated,
generic, and only slightly more detailed than the information given to parents
(Jones & Egley, 2007). Such information usually includes graphs that place individ-
uals or cohorts on a continuum that is divided into grades or proportional clusters,
utilising similar information that compares this cohort to other groups (for
example, students in other states or regions), and percentile breakdowns for indi-
vidual questions or combinations of questions (for example, strands in mathe-
matics or areas of study in literacy). There is growing concern that teachers may use
testing to ‘drive’ their teaching—anticipating what may be included in assessment
and then teaching accordingly. Indeed, a growing body of research (for example,
Jones & Egley, 2007; Pedulla et al., 2003) shows that mandatory testing has been a
powerful influence on what gets taught in classrooms and, to a lesser extent, on the
methods of instruction. Moreover, Stecher and Barron found that ‘more teachers
reported increasing the amount of time spent on subjects that were tested at their
grade level than on subjects that were not tested’” (2001, p. 268). Interestingly,
primary teachers were found to be more influenced by testing than their secondary
colleagues, while a majority of teachers at each grade level indicated that state test-
ing programs have led them to teach in ways that contradict their ideas of sound
instructional practices (Pedulla et al., 2003).There is also a disquiet among the edu-
cation community that teachers may be judged more by how they educate their
students for testing rather than taking a student-driven approach (Hattie, 2005).
Furthermore, elements of the curriculum that are not easily testable (and thus
measurable), such as open-ended problem-solving, are at risk of being squeezed out
of the classroom: future curriculum standards could be lowered to allow more
students to perform well in standardised testing (Hattie, 2005). As McNeil (2000)
argues, placing a premium on students’ performance in tests has led to instruction
that is focused primarily on test pre-paration, thus limiting the range of educational
experiences awarded to students and potentially reducing the instructional skills of
teachers.

Despite such concerns, an increasing number of countries are establishing
mandatory testing across primary and secondary schooling. It is noteworthy that
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Australia has among the highest numbers of mandatory tests (four tests in Years 3,
5,7 and 9) in the world (O’Donnell & Sargent, 2008). In the following sections we
argue that the lack of attention to the graphical component in tests is highly prob-
lematic because the alignment of content and tasks is particularly important in

high-stakes assessment and in informing instructional practice (Kulm, Wilson &
Kitchen, 2005).

The Australian context

In May 2008, approximately 1 million Australian students in Years 3, 5, 7 and 9
participated in the inaugural national numeracy testing. Previously, standardised
testing was conducted at a state level—with as many as seven different numeracy
tests being administered by different states to students of different ages—and thus
no nationwide comparisons were available except through an equating process. The
national testing agency will generate reports to various stakeholders at different
levels of analysis:

The results from these national literacy and numeracy tests will provide an
important measure of how Australian schools and students are performing in the
areas of reading, writing, spelling and numeracy. The results from the assessment
program will be used for individual student reporting to parents, school report-
ing to their communities, and aggregate reporting by States and Territories
against national standards. (Curriculum Corporation, n.d., emphasis added)

It is noteworthy that this national assessment agenda is the first step toward
Australia’s inaugural national curriculum. As the framework for the national cur-
riculum is being developed, data from the national assessment instruments will be
used to make comparisons about student, school, and state and territory perfor-
mance. In this paper, we will highlight the problematic nature of such reporting—
particularly if the teaching and learning experiences of any new curriculum are
overly influenced by student results on such assessments. In addition, we will argue
that the increasing role of information graphics in the construction of mathe-
matics items should be considered. Nevertheless, these graphic representations need
to be used appropriately, otherwise fallacious and misleading impressions of student
performance will eventuate—which in turn will create unreliable data for decision-
making.

Graphics in an information age

In what could be considered a burgeoning information age, our society has become
more reliant (often from necessity) on representing information in diagrammatical
and graphical forms. Such information, for which multiple representations are often
provided, uses dynamic forms of spatial and visual information to manipulate
images. At the same time, school curricula are becoming increasingly graphic in
nature with the mathematics curriculum, in particular, moving away from pre-
dominantly word-based problems to the integration of graphical representations to
convey information (Lowrie & Diezmann, 2005). In addition, the nature of
graphics-based tasks has also changed, with multiple representations and increased
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detail embedded within graphics. As a consequence, mathematics tasks are more
likely to include graphics information, and the graphics are more detailed and gen-
erally represent information with increased richness. Furthermore, the entire nature
of test design has changed dramatically in recent years as graphical and visual rep-
resentations become increasingly embedded within items.

A comparison of two state-based tests in Australia (over a 13-year period)
revealed distinct differences between the number of graphic items included in the
respective tests and the richness of the graphics presented. Figure 1 shows items
from two New South Wales Basic Skills tests, 13 years apart. It illustrates a differ-
ence in graphic richness as well as a change in literary demands (for example, the
worded instructions to complete the task). The first task requires the student to
interpret a two-dimensional graphic that is relatively free of detail and information
that could be considered distracting. By contrast, the second task presents infor-
mation in more detailed and saturated ways (including both two-dimensional,
bird’s-eye perspectives and elevation perspectives of three-dimensional objects). We
are not suggesting that one task is more challenging or worthwhile than the other.

21 Joseph put a mouse at the start of 4 Melanie made this model and drew a
this maze. plan of her model.

Which plan shows the top view of
Melanie’s model?

START

It ran through the maze. h
It turned right, then right, then left,

then left.

Where did the mouse finish?
O A Op O
OB OE
O C R g

New South Wales Department of New South Wales Department of
Education and Training (1997), New Education and Training (2007), New
South Wales Year 3 Basic Skills Test South Wales Year 3 Basic Skills Test

Figure | A comparison of test items more than 10 years apart
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We do contend, however, that the mathematics understandings and problem-
solving processes required to complete these are different.

Roth (2002) argues that greater attention must be given to the practices of
reading, producing and understanding graphical representations. Lowrie and
Diezmann (2005) maintain that the explicit teaching of such practices has to occur
in order for students to effectively decode graphical information. As educational
bodies place increased emphasis on the importance of graphical representations (for
-éxample, Australian Association of Mathematics Teachers, 1997; Department for

" Education and Employment, UK, 1998; National Council of Teachers of
Mathematics, 2000), it is unsurprising that standardised testing has taken a similar
course. '

(Re)presenting graphics in assessment

Visual representations, such as graphs, diagrams, charts, tables, and maps are part of
the emerging field of information graphics found throughout current school
curricula. Such graphics are regularly used to represent mathematics content in
standardised testing (Diezmann, 2008; Logan & Greenlees, 2008). It is somewhat
problematic that research on the use and undesstanding of images and graphics is
quite limited (Postigo & Pozo, 2004), despite the view that such forms of mathe-
matics literacy are essential in today’s society (Goldin, 1998; Zevenbergen, 2004). It
is also note\;vorthy that scant consideration has been awarded to the general view
of this literacy with respect to assessment. Postigo' and Pozo (2004) argue that
previous research conducted in this field is quite heterogeneous, since the study of
maps, diagrams and numerical graphs has its own syntax and conventions. In
addition, most studies have considered student performance (from a correctness
perspective)—and therefore considered graphical problems—in relation to the
understanding of mathematics content rather than a student’s ability to make sense
of the graphical component of the task. It is also the case that student performance
across different types of graphics (for example, number lines and maps) is not
generally strong (Lowrie & Diezmann, 2005) and that correlations between items
within the same graphic type are at best moderate (Lowrie & Diezmann, 2007).
These findings challenge the view that mathematics content (and thus students’
understanding of mathematics concepts) is actually being assessed when mathe-
matics items have substantial graphics attributes. New forms of (assessment) item -
representation, particularly those rich in graphics, thus place increased attention on
students’ capacity to decode and interpret the various elements that constitute the
task (Diezmann & Lowrie, in press).

Decoding graphics

The decoding of graphics items and tasks requires the student to contend with
multiple sources of information that may include text, keys or legends, axes and
labels (Kosslyn, 2006); as well as elements of density and saturation (Bertin,
1967/1983). It is therefore necessary to consider these ‘components’ (which are
often interrelated) in conjunction with the actual mathematics that is contained
within a given task. As Hittleman (1985) indicates, student thinking can be
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interrupted simply by moving between the text of a question and the information
in the graphic. Even with much older college students, Carpenter and Shah (1998)
found that students spent the majority of time analysing information from par-
ticular regions of the graphic (for example, moving between the axes and the labels)
and were unable to keep track of the information presented in its entirety. The
elements used in constructing a graphic have an impact on how well students
understand and interpret the task and influence their success in choosing
appropriate strategies to use on the task and ultimately to complete the task. For
primary-aged students, the comprehension of the graphic can be a demanding
aspect of a mathematics task in its own right. The actual mathematics of a given
task is not likely to be the critical aspect of reasoning and problem-solving if the
student is not able to access and interpret the information effectively. Students’ per-
formance may thus be a measure of their ability to comprehend the graphical (or
linguistic) components of a task rather than their knowledge of the mathematics
within the task. We are concerned that mathematics items constructed for manda-
tory national tests do not have an adequate alignment between content and the
representation of the graphic. Substantial data is obtained (and reported) on student
performance on mathematics tasks but rarely do we consider whether the tasks
actually assess student knowledge and numeracy understandings.

The nature of graphical composition

Kosslyn (2006) suggested that the graphical composition of a task included not
only the actual graphic but also all of the information embedded within the task.
Research conducted with colleagues (Diezmann & Lowrie, 2008; Logan &
Greenlees, 2008) has indicated that it is difficult to separate the graphical features
that are embedded in a task from other demands (including mathematical content
and linguistic demands). As Brna, Cox and Good (2001) suggest, diagrammatic
reasoning is influenced by the nature of the task, the semantic properties of the
diagram, and the person’s prior knowledge, which include skills, preferences and
experiences). The actual graphical components influence task complexity since the
student needs to be aware of the content domain and conventions regulating sign
use to decode mathematical formulae and graphs. These structures intend to pro-
vide the spatial framework that helps to organise information and the particular
conventions that represent information. As a consequence, errors may occur not
because of ‘misconceptions’ or limited cognitive ‘understandings’, but rather
because students are unfamiliar with the contexts and situations for which such
conventions are constructed and the extent to which contextual meaning (and
experiences) influence the interpretation of the graphic (Roth, 2002).

The context in which mathematical content is presented may influence a
student’s initial sense of a task, leading to the use of routine and highly practised
responses. For example, with language, students may pay only superficial attention
to the written text within a task, finding key words that may indicate important
information relating to the graphic. This can hinder students’ holistic understand-
ing of the task, and hence, the rationality and correctness of their answers (Wiest,
2003). Additionally, as Boaler maintains, many tasks require students to ‘suspend
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reality and ignore their common sense in order to get a correct answer’ (1994,
p. 554).

The actual literacy demands required to interpret a task also have an impact
on sense making—particularly with young children, as they interrogate data and
interpret the multiple meanings that often accompany their vocabulary and con-
cept development. The multiple layering of ‘meaning’ is also applied to the use of
language in everyday contexts and interactions (Adams, 2003). For example, the
word ‘flip” has both an everyday meaning and a mathematical meaning; young
children need to be able to appropriately identify this term wherever it is used.
Specific processes associated with ‘working mathematically’, including questioning,
communicating and reasoning, provide opportunities for students to unpack the
vocabulary embedded in tasks, and thus help reduce literacy demands.
Furthermore, explicit teaching of terminology that is applied to mathematics (for
example, volume and net) needs to be undertaken. We are not suggesting teachers
should be teaching to the test but rather that the elements that constitute a
mathematics task need to be understood.

The role and nature of information graphics in
national tests

This section presents an analysis of the mathematics items used in the inaugural Year
3 and Year 5 Australian national numeracy tests (Ministerial Council on Education,
Employment, Training and Youth Affairs, 2008a; 2008b) to ascertain the role of
information graphics in the tests and to review the type (category) of graphics that
are used. At a functional level, graphics can be classified as either context graphics
or information graphics (Diezmann, 2008). Context graphics (see Figure 2) are
often used for illustrative purposes to represent objects, people or locations. They
contain no mathematical information pertinent to the task and can often be mis-
leading. By contrast, information graphics (see Figure 3) are an integral component
of a task—with information embedded within the graphic needing to be decoded
in order to solve the task. There are many thousands of information graphics but
Mackinlay (1999) categorises them into six types that he refers to as graphical
languages. These languages are ‘axis’, ‘opposed position’, ‘retinal list’, “map’, ‘con-
nection’ and ‘miscellaneous’. Like text-based languages, graphical languages have
unique signs, symbols and characteristics. An overview of each graphical language
is shown in Table 1.

An analysis of item representation in national numeracy tests

What proportion of items from the new national tests contain graphics?
From the 75 items across the two tests, a total of 64 items (85%) contained either
information (n = 45) or context graphics (n = 19) (see Table 2). As a result,
students’ ability to make distinctions between these two types of graphics and con-
sequently to use them appropriately will affect their performance. For example, in
Figure 2 students do not need to use the image of the bus to answer the associated
word problem as all relevant information is in the written text. By contrast, in
Figure 3 students should use the information graphic to determine the number of
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sit-ups Manu does on Wednesday. For some students, knowing when to and how
to extract information embedded in graphics can be problematic. Elsewhere,
Diezmann, Lowrie and Kozak (2007) have found that low-performing students
tend to draw upon everyday knowledge not specifically relevant to the actual task
in order to generate a solution, whereas high-performing students intuitively draw
on implicit information embedded within a graphic to decode a task.

Table | Structure and functionality of the six graphical languages

Graphical languages  Graphical knowledge Mathematics functionality

Axis (e.g., number line) Relative position of a mark Number line as a measurement
on an axis model

Opposed position Relative position of marked sets  Everyday use of graphs

(e.g., graph) of points between two axes

Retinal list (e.g., mental Conventions in using colour, Translations, rotations, reflections,

rotation, flip) shape, size, saturation, texture, discrimination skills

or orientation in representation;
markings are not dependent on

position
Map Model of spatial representation Bird’s-eye view, two-dimensional
of locations or objects and the and three-dimensional
convention of key use representations
Connection Conventions of structured Everyday applications (e.g., train
(e.g., family tree) networks with nodes, links and maps, knockout competitions)
directionality
Miscellaneous Conventions of additional graphical Various, depending on the graphic
(e.g., calendar) techniques (e.g., angle,

containment) in representation

A bus took some students to camp.
It left the school at 10:00 a.m.

The bus trip took one and a quarter hours.
What time did the bus get to the camp?

Figure 2 A context graphic (Ministerial Council on Education, Employment,
Training and Youth Affairs, 2008a, Year 3 numeracy test, item 22)
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Monday Tuesday Wednesday
Sit-ups 10 15 20
Push-ups 6 9 12
Jumps 15 20 25

How many sit-ups does Manu do on Wednesday?

Figure 3 An information graphic (Ministerial Council on Education,
Employment, Training and Youth Affairs, 2008a, Year 3 numeracy
test, item 12)

What types of graphics are included in the two sets of test items?
An analysis of the test items based on Mackinlay’s (1999) six graphical languages
reveals that all graphical languages were represented across both tests (Table 2).
Miscellaneous (38%) and retinal list (29%) items were more commonly used, while
map and axis items (both 8%) were used less frequently. Most surprising was the
fact that opposed position items (which included bar and column graphs) were
very much under-represented, despite the fact that they feature so predominantly
in school curricula. It was noteworthy that connection items were not represented
in either test, despite the fact that the interpretation of family trees and sporting
draws (for example, tennis) require such processing and, in fact, helps with impor-
tant mathematical skills such as proportional and logical reasoning.

Table 2 Proportions of test items that contain graphics by year and type

Year Total Graphics Context Information graphics: graphical languages
items items graphics MrP RL MA AX opP co

3 35 91%(n=32 I 9 6 2 [ 2 |
5 40 80%(Mn=32) 8 8 7 3 4 | |
Total 75 85%(n=64) 19 17 3 5 5 3 2

Key: Ml = miscellaneous; RL = retinal list; MA = map; AX = axis; OP = opposed position; CO = connection
* Note: This includes items that could be classified as visual representations embedded in the item to
represent concrete understandings of ideas or symbols

The compositional structure of information graphics

Together with colleagues (Logan & Greenlees, 2008), we have investigated the
influence that graphics representation has on student performance and sense
making. Forty Grade 6 students from three regional schools in New South Wales,
Australia took part in this study. The participants were asked to solve the six items
from the Graphical Languages In Mathematics instrument (Diezmann & Lowrie,
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in press), as part of an ongoing analysis of their mathematics decoding performance.
After analysing student responses, these items were modified with changes to either
graphic or non-graphic (including context and literacy demands) elements. Thus,
the six modified items were variations of those in the standard instrument.
The Appendix presents both standard and modified items. The participants com-
pleted the modified items approximately six weeks after solving the standard items.
We assumed that the modified items would provide opportunities for the students
to use more efficient strategies to complete the tasks. Furthermore, we anticipated
that the item modification would provide scope to consider student sense-making
in situations where task representation was altered.

For three of the items (Items 1, 4 and 5) the graphic was altered while a non-
graphic element was changed for the other three items (see Appendix). The
graphic variations included removing pictures from above a number line (Item 1),
removing plotted dots from the slope of a line graph (Item 4) and shading the back-
ground on a retinal task (Item 5). Non-graphic changes included adding numerals
to a line graph (Item 2), bolding a word (Item 3) and changing the context of a
task (Item 6). Table 3 provides a description of student success across the standard
and modified items. Each of the sets of items have been classified with respect to
changes that were made to either the graphic, the wording or the context of the
task—specifically the addition or removal of graphical or literacy elements.

Table 3 Student performance across standard and modified tests

Question Test Effect size Change
A B size
(%) (%) d
Correct Correct
| 44 53 .18 Graphic removed
Emphasis taken away
2 33 35 .04 Context changed
Data added
3 60 53 -4 Wording changed
Emphasis added
4 22 60 83 Graphic removed
Emphasis taken away
5 51 65 .29 Graphic added
Emphasis added
6 24 18 —-14 Context changed

Emphasis taken away

Effect sizes (measured by Cohen’s d) revealed the degree of change in per-
formance across the two tests. For four of the six questions effect size was small
with such results indicating minor differences between the performance of students
across the standard and modified test items. The students’ performances increased
on four of the six items with the three largest effect sizes being associated with a
change to the graphic. By contrast, modification to the literacy or context resulted
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in only minor improvements or decreases in performance (see Appendix for
examples of the items).

The two most significant changes involved an aspect of the graphic being
removed (Question 4) or added (Question 5). In Question 4, dots were removed
from the slope of the graph with dramatic performance increases occurring (from
22% correct to 60% correct). The removal of the dots allowed children to focus on
the movement of the line (and thus interpreting a rest as a plateau of the line) rather
than focusing on points along the line (which many students interpreted as a rest).
As Logan and Greenlees (2008) explain, many students saw the dots as a pause
based on the analogy of a full stop in a sentence. In Question 5, shading was applied
to the background of the graphic in an attempt to give definition to the vacant
puzzle piece. The addition of the shaded background allowed students to see in
their ‘mind’s eye’ that they had to fit the puzzle piece into the vacant space, rather
than sliding the piece into the side of one of the options.

Changes to the literacy or context aspects of the items resulted in a negative
change in student performances on two of the items. For Question 3, a change in
the literacy aspect actually confused students. Many students’ incorrect responses to
the standard item focused on both variables (i.e., length and weight) as being exact
measurements. It was envisaged that by bolding the word ‘approximately’, those
students would assign an approximation to the weight and an exact measurement
to the length. In fact, it had the opposite effect with many students who correctly
solved the standard item changing their answer in the modified form. The exag-
geration of the word ‘approximately’ drew students’ attention to that variable
(weight) and this became the measure from which they chose their answer.

In Question 6, students’ understanding of the context of the task (that is,
knowledge of the food chain) unduly influenced (and thus hindered) their inter-
pretation of the task, with many students’ incorrect responses relying on their prior
knowledge to answer the question. By changing the food chain to something non-
sensical, it was anticipated that students would use the key and the arrows of the
graphic to work out a solution. Again, this proved not to be the case, with a
number of students who correctly solved the standard item distracted by the
unfamiliar context of the modified item. It was still apparent that a majority of the
students had trouble applying the key and interpreting the directionality of the
arrows in the graphic regardless of the context of the task.

This study highlighted the extent to which a word, a phrase or an element of
a graphic could influence students’ capacity to decode information. It was evident
that variations in graphics had a significant (and generally positive) effect on
student performance. Moreover, when the graphical elements of items were mod-
ified, many students who had incorrectly solved tasks were able to reason—in
sophisticated ways—about the nature and content of the tasks. By contrast, changes
in mathematical literacy or context had only a small effect on student performance
and sense making (Logan & Greenlees, 2008). It was somewhat disconcerting that
item construction had such a large impact on performance rather than student
knowledge of concepts. In most cases, the errors involved students not considering
information in the graphic, being overly influenced by information (often
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irrelevant) in the graphic, or not considering the connections between embedded
graphical information and the textual and symbolic information.

Since graphics are processed in both verbal- and imaged-based processing
systems (Paivio, 1971), it is not surprising that even variations in graphics will
change the way an item is represented and thus understood. Younger students are
generally more influenced by a graph’s structure and content than older students,
who possess more sophisticated skills to decode information (Shah & Hoeffner,
2002). As Kirby (1994) maintained, the processing of spatial tasks is quite complex;
as a result, students need to receive instruction on how to process such information
from the early years of school. It has also been found that changes to context and
written information had some impact on student performance, but it was the
modifications to the graphic that most supported students’ sense-making (Logan &
Greenlees, 2008). Since the intent of standardised testing is to provide opportun-
ities for students to show what they understand about a concept, it is essential that
the graphics embedded in mathematics items are well designed.

Conclusions and implications

Across many aspects of our day-to-day experiences (and indeed in most areas of the
school curricula), information graphics have become increasingly necessary in rep-
resenting, organising and analysing information. It is not surprising that assessment
practices are aligned to such societal and curriculum changes—and it seems to be
particularly salient with respect to standardised instruments (Diezmann, 2008;
Logan & Greenlees, 2008). The design of mathematics items, particularly those used
in standardised instruments, is more likely to be a reliable indication of student
performance if graphical, linguistic and contextual components are considered
separately and collectively in task design.

Implications for the classroom

We believe that current practice in national numeracy testing is likely to under-
estimate students’ understanding of mathematical concepts unless specific attention
is paid to the graphical languages used in the tests. In particular:

» classroom teachers should be conscious of explicitly teaching the various
graphical languages in order to support the development of students’ ability to
decode information graphics. This explicit teaching will remain a challenge if
teachers are unable to identify the important attributes (and differences) among
items from each of the graphical languages.

* learning opportunities should be broad and include graphical languages that are
typically used outside formal mathematics contexts (maps, miscellaneous) in
addition to those explicitly incorporated into the mathematics curricula (axis,
opposed position).

* specific language or terminology needs to be talked about in a variety of
ways because one word (for example, flip) can have a marked influence on
responses.
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* teachers need to be aware of the fact that knowledge transfer across and within
graphical languages is not overly high.

» all graphical elements—such as text, keys or legends, axes and labels—need to be
considered when children are learning to decode information graphics.

* teachers should be conscious of the limitations to understanding that can even-
tuate if graphical representations are restricted to particular prototypes since
questions in national tests tend to display graphics from a broad spectrum of
sources.

Implications for test designers

For the same reasons, national numeracy testing will yield more authentic data if
test developers take account of these issues in their practice:

* the construction of mathematics test items should be developed from a ‘holistic
design’ perspective. Graphics need to be carefully chosen to ensure the integrity
(and meaning) of the item is maintained (Diezmann, 2008).

* when creating test items, designers need to not only consider the mathematics
experiences students bring to a task but also the assessment experiences students
have acquired. The abundance of graphics in mandatory testing is a relatively
new phenomenon and consequently even slight changes in graphic representa-
tion influence performance. It is essential that poorly constructed graphics do
not impact on performance.

* mathematics test items created within a real world or authentic context can often
be misinterpreted by students (Boaler, 1993). Designers need to be aware that
such representations may not provide a clear indication about student under-
standing with respect to the mathematical intent of the task.
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Appendix: The standard and modified versions of items

Standard item Modified item
1 The following graph shows the length of 1 The following graph shows the length of
time taken for the four stages in the life of a time taken for the four stages in the life of a
butterfly. butterfly.
'; caterpillar pupa butterﬂy w egg caterpilar pupa butterfly
lllllll(lLl;lllllll;{lllllL,Llilll(ll(ll}
0246810 1214 16 182022 24 2628 30 3234 36 38| 0 2 4 6 8 10 1214 16 18 20 22 24 26 28 30 32 34 36 38
Days Days
How many days are there in the caterpillar How many days are there in the caterpillar
stage? stage?
Answer Answer
s O+ = 0= |0 O+ 0= O
2 2
Bay City Exton Yardville | Bay City Exton Yardville
0 60
On the road shown above, the distance from On the road shown above, the distance from
Bay City to Exton is 60 kilometres. What is the | Bay City to Exton is 60 kilometres. What is the
distance from Bay City to Yardville? distance from Bay City to Yardville?
Answer Answer
l_—_] 45 kilometres D 75 kilometres l:] 45 kilometres l:l 75 kilometres
EI 90 kilometres D 105 kilometres I:l 90 kilometres D 105 kilometres

156 Australian Journal of Education \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaa,



Standard item

Modified item

3 The graph compares the maximum length
and mass to which some whales grow.

KEY

|| Miength
| El mass

Whale species

100 150

0 50
Length {m) and mass (t)

A fisherman reported that a whale 25 metres
long and weighing approximately 80 tonnes had
beached itself.

Which species of whale could this be?

Answer
[:I Right whale I:l Humpback whale
[:I Fin whale

I:l Blue whale

3 The graph compares the maximum length
and mass to which some whales grow.

) i KEY

' M length

1| 2 mass

Whale species

150

100
Length (m) and mass (t)

A fisherman reported that a whale 25 metres
long and weighing approximately 80 tonnes
had beached itself.

Which species of whale could this be?

Answer
I:I Right whale
|:I Fin whale

4 How long was Meg’s first rest?

Distance travelled during
Meg's bike ride
50 - S

40 -

30

20

£

Distance in km

’

J
v
H

67 89101112 1 2 3 4
amamam am am am pm pm pm pm pm
Time of day

4 How long was Meg’s first rest?

Distance travelled during

Meg’s bike ride
50 - { 1
P
40 .
€ e
t 30 e
8 ;
[= ,’
s 20
2 4
o +
0L
T
Vi

67 8 9101112 1 2 3 4
amamam am am am pm pm pm pm pm

Time of day
I:I 1 hour
l:‘ 3 hours

Answer

I:‘ 2 hours
l:l 4 hours
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Standard item

Modified item

5

Luke was using
a puzzle. A

Where would
this part fit?

5

Luke was using
a puzzle. Al

Where would
this part fit?

E} c

Answer

I:‘A l:‘B I:IC DD

6 A SIMPLE FOOD WEB

6 A SIMPLE FOOD WEB

KEY
-
means ‘is
eaten by’

KEY
e
/ means ‘is
l—jgwm eaten by’
bream
whit+ebait plant plankton
animal /
plankton

The animals in this food web only eat what is
shown.
If all the animal plankton die which of the
following will also die?

Answer

crabs

sharks

LI

doodlydoc
pipsy I\

whimwham wobbly gog

/

The animals in this food web only eat what is
shown.

If all the flibbily gogs die which of the following
will also die?

D shebangs
l:l piffpuffs

flibbily
gog

Answer
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